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Experimental results of exploding tungsten wire experiments with heating rates
of 1010 to 1011 K · s−1 are interpreted using a one-dimensional hydrodynamic
model. The vaporization dynamics under these conditions are discussed. It is
shown that for the wires used the superheating of the liquid phase is small and
vaporization starts close to the binodal line of the phase diagram. Due to
inertia, a volume vaporization takes place in a thin surface layer, while in the
bulk of the column formed by the exploding wire a pressure of the order of
10 kbar is maintained. Sufficiently uniform density and temperature distribu-
tions are formed in the liquid core surrounded by the two-phase layer. This
behavior of vaporizing wires was used to obtain the thermal expansion coeffi-
cient of liquid tungsten along with its critical point parameters.
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superheating; thermal expansion; tungsten.

1. INTRODUCTION

A theoretical description of liquid metal thermodynamics is a very complex
problem, which is still far from a solution. Thermodynamic properties have
been investigated experimentally mainly for alkali metals and mercury up
to their critical points. Critical point parameters of refractory metals have
been estimated using corresponding states or semiempirical rules [1]. Such
estimations usually give large scatter in the critical constants, and their
accuracy is very uncertain. For example, estimates for the critical tempera-
ture of tungsten are in the range of 12,000 to 23,000 K and the critical



pressure is between 3 and 16 kbar. Several dynamic techniques were applied
to determine the critical parameters experimentally. Martynyuk and
Karimkhodzhaev [2] have proposed to use exploding wires for this purpose.
In Refs. 3 and 4 this approach was developed using more extensive diag-
nostics. Due to lack of information about the exploding wire dynamics,
the experimental results were interpreted using some assumptions. In
particular, the vaporization was assumed to start at a spinodal.

In the present paper results obtained in exploding wire experiments
are interpreted using a one-dimensional numerical model describing the
hydrodynamic flow and the vaporization dynamics. The work is both
theoretical and experimental. Experiments on exploding tungsten wires
with heating rates of 1010 to 1011 K · s−1 have been performed. The model
describes adequately the exploding wire dynamics over the entire range of
heating rates. It is shown that for tungsten wires used in these experiments
(wires manufactured without any purification procedure to remove the
nucleation centers), the superheating of the liquid phase is small and
the vaporization starts close to the binodal. Due to inertia, the volume
vaporization takes place in a surface layer while a high level of pressure is
maintained in the bulk of the column formed by the exploding wire. Suffi-
ciently uniform density and temperature distributions are maintained in the
liquid core surrounded by the two-phase layer. The thermodynamic state of
the layer is strongly inhomogeneous. The model shows that at heating rates
of the order of 1011 K · s−1 the thickness of the layer remains small com-
pared to the liquid core radius during a sufficiently long period of time.
This behavior of vaporizing wires was used to investigate thermophysical
properties of tungsten at substantially higher temperatures and pressures
than those attained in slower experiments [5–7].

2. EXPERIMENTS

Two series of experiments were carried out in air at atmospheric pres-
sure with tungsten wires having a diameter of 75 mm and a length of 5 mm.
The wires (supplied by Goodfellow Metals) were of 99.99% purity by
weight as reported by the manufacturer. In the first series heating was
accomplished by discharging a capacitor of 327 nF charged to an initial
voltage of 2.2 to 4.6 kV through the wire; in the second series the capacitor
had a value of 675 nF and its initial voltage was in the range 3.8 to 6.6 kV.
The discharge circuit used provides an electrical current with a density of
(3 to 7) × 107 A · cm−2 in the wire. Under these conditions the Joule heat
dissipated in the wire reaches the cohesive energy after 100 to 500 ns
depending on the initial voltage. A coating (polytetrafluorethylene) with a
thickness of 14 mm was used to avoid a peripheral gas-discharge.
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The diagnostics used in these experiments are described in Refs. 8 and 9.
The voltage across the wire was measured by means of an ohmic divider and
the current through it by a Rogowski coil. The current and voltage are mea-
sured with a precision of 0.5%. The current signals of different experiments
with all parameters constant show a scatter of less than 2%. The voltage
signal scatter is about 3%. The temperature was deduced from the radiance
of the column surface measured at a wavelength of 650 nm (with an uncer-
tainty of less than 8%). The diameter of the expanding column was deter-
mined from a streak camera image caused by self-luminosity with a precision
of 3% and a scatter of 7%. Shadowgraphs obtained using a Xe flashlight were
used to observe the column at low temperatures (T < 7,000 K). Four images
of the entire column with an exposure time of 10 ns each for pre-chosen
instants were obtained with a fast framing camera. These images are used to
ensure that the symmetry of the column does not change, and that gas-dis-
charges do not develop in the surrounding air. From this set of measured
quantities, the specific enthalpy, temperature, density, electrical conductiv-
ity, and their mutual dependencies are obtained. More than 20 experiments
for each series were performed. Only one parameter was varied within a series:
the initial voltage. Every experiment was repeated three times to get the infor-
mation about the reproducibility and uncertainty for the measured quantities.

3. HYDRODYNAMIC MODEL

A one-dimensional model was developed to describe the hydrodyna-
mic flow in a metal undergoing thermal expansion and vaporization when
an electrical current pulse is applied [9, 10]. The set of equations consists
of the local laws of conservation of mass, linear momentum, and energy
together with Maxwell’s equations. A one-dimensional magnetohydrody-
namic flow with Z-pinch symmetry is considered. In a cylindrical coordi-
nate system the z-axis is directed along the axis of the wire, and all physical
quantities are functions of the radius vector r and the time t only. The only
nonzero component of velocity is the radial component u, the electrical
current density has only the component along the z-axis j, and the magne-
tic field strength has only the azimuthal component H. The laws of con-
servation can be written as
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where r, p, and e are the density, pressure, and specific inner energy,
respectively, w=e+p/r is the specific enthalpy, and EŒ is the electrical
field strength in the reference frame which is at rest in relation to a particle
in the flow. According to the Lorentz formula, EŒ=E+uH/c, where E is
the electrical field strength in the laboratory frame of reference, and c is the
speed of light in vacuum (the Gaussian system is used). The effects of heat
conduction, viscosity, and radiation are negligible, and therefore the corre-
sponding terms were dropped in the dynamical equations, Eqs. (1)–(3). The
evaporation from the metal surface can be neglected also, as this process is
limited by heat conduction from the bulk to the surface layer.

Maxwell’s equations take the form:
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The electrical current density obeys Ohm’s law: j=sEŒ (s is the
electrical conductivity).

The hydrodynamic flow was computed for three regions: tungsten
wire, coating, and surrounding air. We assumed that the substances do not
mix with each other at their boundaries. The Godunov method [11] was
used to solve the dynamical equations, Eqs. (1)–(3). Maxwell’s equations
were solved by the tridiagonal inversion method described in Ref. 12. The
mesh used in these computations consisted of 10 to 50 cells in the wire,
10 to 40 cells in the coating, and 500 to 1000 cells in the surrounding air.
Thermodynamic functions of tungsten in the region of the liquid-vapour
phase transition were obtained using the equation of state model from
Ref. 13.

An equation to represent the electrical conductivity of tungsten as a
function of temperature and density was developed for the region of inter-
est according to Ref. 10. For the liquid phase the following function was
used:

s=
smf(r)

1+bl(T−Tm)
; f(r)=1+c(1−r/rm)k (6)

where T is the temperature, and the subscript m refers to the melting point,
i.e., Tm is the melting point temperature, sm is the conductivity of liquid
tungsten at the melting point, and rm is its density at this point. The con-
stants bl, c, and k were adjusted using our experimental data. In the
supercritical region an interpolation was used, which gives as an asymptote
the liquid phase dependence, is smoothly merged at low densities with an
ideal plasma dependence, and describes the metal-nonmetal transition in
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the intermediate region according to Ref. 14. The ideal plasma conductivity
was obtained using Saha’s formula to calculate the plasma composition,
and taking into account the collisions of electrons with ions and atoms.

It was assumed that in the two-phase liquid-gas region the phases
constitute a fine dispersed mixture. The conductivity of the mixture was
calculated by means of the effective medium formulae [15]:

s=1
2(g+`g

2+2s1s2 ) (7)

g=[s1(2−3y)+s2(3y−1)]/2 (8)

where s1 is the conductivity of the liquid, s2 is the conductivity of the
vapor, and y is the volume fraction of the vapor in the mixture. Equations
(7) and (8) were applied to describe also the conductivity in the solid-liquid
region.

3. ANALYSIS OF VAPORIZATION DYNAMICS

The resistivity without correction for thermal expansion is presented as
a function of enthalpy for different heating powers in Fig. 1. The calculated
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Fig. 1. The resistivity without correction for thermal expansion as
a function of enthalpy for six experiments with different heating
power: 1, 2.4 TW · mol−1; 2, 3.6 TW · mol−1; 3, 6.3 TW · mol−1; 4, 7.7
TW · mol−1; 5, 8.2 TW · mol−1; 6, 8.8 TW · mol−1. Solid lines, experi-
ments; dotted lines, model. The beginning of melting (s), the end of
melting (l), and the beginning of vaporization (v) are designated.
Triangles, [6].
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dependences were obtained assuming that the vaporization starts at the
binodal and the two-phase liquid-vapor mixture is in local thermodynamic
equilibrium. At point v the resistivity rises because the volume vaporization
starts. The volume fraction of the vapor increases and therefore, the well
conducting cross-section of the column is reduced because the conductivity
of the vapor is substantially lower than that of the liquid metal. The peak
in the resistivity is formed when the percolation threshold is achieved for
the liquid-gas mixture. The threshold value of y derived from Eqs. (10) and
(11) is equal to 2/3. At the threshold the fine dispersed mixture transforms
from the liquid with vapor bubbles distributed in it into the vapor with
separated droplets. For y > 2/3 the density dependence of the conductivity
of the mixture becomes a rather weak function. Therefore, the resistance
decreases as the cross-section of the column increases. As can be seen, for
the highest heating rate experiments 5 and 6 the resistance of a melted wire
is almost constant over a wide range of enthalpy. For experiment 6 a con-
stant value is maintained up to an enthalpy even larger than the cohesive
energy of tungsten (0.848 MJ · mol−1, [16]).

In Fig. 2 the measured and calculated densities are presented as a
function of enthalpy. The higher the heating rate, the larger the densities
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Fig. 2. Density as a function of enthalpy for 6 experiments with different
heating powers (see Fig. 1). Solid marks and crosses, experiments; dotted lines,
model. Open marks: triangles down, [3]; triangles up, [6]; squares, [7]; circles,
[5]. Thick lines: b, equilibrium line; s, isobar P=5 kbar for superheated liquid; m,
isobar P=5 kbar for two-phase mixture in thermodynamic equilibrium.
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that are reached at a certain value of enthalpy. This behavior is directly
related to the volume vaporization dynamics. Qualitative estimates explain
this behavior. The sound speed for the liquid-vapor mixture is much lower
than that for the liquid phase. For an infinitesimal mass fraction of vapor,
the sound speed cm in such a mixture is

cm=EcohPs(T)/(RgTr`cpT) (9)

where Ecoh is the cohesive energy, Ps(T) is the saturation vapor pressure,
Rg is the gas constant, cp is the heat capacity of the liquid, and r is its
density [17]. At the normal boiling point we obtain cm ’ 10−3 km · s−1,
which is much smaller than the speed of sound for liquid tungsten of ’ 3.2
km · s−1 [6]. This relation between the sound speeds remains valid at higher
temperatures. For example, at T=12,000 K, we obtain cm ’ 0.1 km · s−1.
Thus, the inertia effects in the two-phase mixture are much stronger as in
the liquid and, therefore, the two-phase layer expands relatively slow. This
causes a delay in the expansion of the layer, and the delay is larger the
higher the heating rate is.

The computation results show that the boiling curve of tungsten must
be somewhere close to the data of experiments 5 and 6 (see Fig. 2). If the
curve were closer to the data of Refs. 3, 6, and 7, it would not be possible
to reach the densities of experiments 5 and 6 since a pressure of the order
of 100 kbar would be needed; but the characteristic pressure for experi-
ments 5 and 6 is of the order of 10 kbar. A value of (4.0 to 4.5) × 10−5 K−1

was obtained for the thermal expansion coefficient of liquid tungsten,
which is substantially lower than 8.6 × 10−5 K−1 [6] (we used cp=56
J · mol−1K−1 [7]). The data of Lebedev and Savvatimski [5] obtained for
wires confined in thick capillaries are in good agreement with our results.

This value of the thermal expansion coefficient along with the litera-
ture data for the specific heat capacity, cohesion energy, liquid tungsten
melting point density, and the normal boiling point temperature were used
to fit the parameters of the equation of state. The fitting procedure is dis-
cussed in Ref. 13. As a result we have found: m=1, n=9, Q=1.3, and
cn=3.0. It should be noted that in the equation of state used the specific
heat capacity of the ideal gas term (cn) was also adjusted (in Ref. 13,
cn=3/2). The two remaining fitting parameters can be obtained from the
critical point parameters presented below. The experimental dependences
for the resistance and the thermal expansion coefficient of liquid tungsten
determined were used to fit the parameters in Eq. (6): bl % 2 · 10−5 K−1,
c % 1.0, and k % 1.4.

The dependences shown in Fig. 2 were analyzed to estimate the
superheating of liquid tungsten in these experiments. It seems to be lower
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than the experimental uncertainty. To explain this observation, the isobar
P=5 kbar corresponding to an overheated liquid (up to a spinodal) is
presented. The isobar for the two-phase liquid-vapor mixture in thermo-
dynamic equilibrium is also shown. These isobars and the other thermody-
namic functions presented were obtained by means of the equation of state
with the set of the fitting parameters as above. If appreciable superheating
took place, the curves for experiments 3, 4, 5, and 6 would be located in the
narrow region between the binodal (b) and the isobar for the superheated
liquid (s). This is because the characteristic pressure for these experiments
was larger than 5 kbar. Figure 2 demonstrates a large difference between
the experimental dependences in the region of the liquid vapor phase tran-
sition. Therefore we conclude there was no remarkable superheating. Thus
the vaporization starts close to the binodal.

The kinetics of volume vaporization for liquid metals is discussed in
Ref. 18. A relaxation time for this phase transition in metallic samples
made of a fine dispersed powder was estimated to be of the order of 1 ns.
This gives superheating of the liquid phase of the order of 100 K for a
heating rate of 1011 K · s−1. Hence, the two-phase mixture in our experi-
ments can be considered to be almost in local thermodynamic equilibrium.
The radiographs presented in Ref. 19 confirm this conclusion showing the
bubbles and droplets developed for about 500 ns in tungsten resistively
heated to a temperature of 7,000 to 9,000 K.
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Fig. 3. Root-mean-square (rms) deviations of different measured quantities
from their mean values across the column: resistivity (1), density (2), temper-
ature (3), and enthalpy (4).
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To better understand the distributions of the measured quantities
across the column formed by an exploding wire, in Fig. 3 the root-mean-
square (rms) deviations of some quantities from their mean values are
depicted. The measured quantities are distributed almost uniform up to an
enthalpy of 0.73 MJ · mol−1 which is substantially higher than that attained
in slower experiments (0.26 to 0.33 MJ · mol−1 [5–7]).

4. DETERMINATION OF THE CRITICAL POINT PARAMETERS

The equation of state model can be used to calculate the critical point
parameters. The parameters obtained in this way were considered as a first
step approximation. In this section we discuss some direct experimental
measurements concerning the critical point.

The computation results show that for the experiments with the
highest heating rate the inner part of the column passes into the supercriti-
cal region of the phase diagram, i.e., supercritical temperatures and pres-
sures are achieved. The first sign of this transition into the supercritical
region is the straight-line dependence of the density versus enthalpy
occurring for experiments 5 and 6, since such behavior resembles the
supercritical isobars having no bents in the liquid-vapor phase transition
region. The dependences for the resistance in Fig. 1 confirm this conclu-
sion, showing an almost constant value in this region. Our computations
give for experiment 3 a characteristic pressure of 5 to 7 kbar (in an
enthalpy range of 0.8 to 0.9 MJ · mol−1), for experiment 4 it is 9 to 13 kbar,
and for experiment 5 it is 12 to 15 kbar. The slope of the dependency for
experiment 5 remains close to that of the boiling curve (b) and there are no
bents in the liquid-vapor phase transition region, i.e., for the enthalpy
W [ Ecoh. The data for experiment 4 deviate remarkably from the boiling
curve in this enthalpy range. This means that the two-phase layer becomes
rather thick for this experiment. Therefore, the characteristic pressure does
not exceed the critical pressure. As a result one may conclude that the cri-
tical pressure is somewhere between 9 to 13 kbar.

The second sign that the supercritical region is reached can be
recognised in the temperature dependences. Figure 4 depicts the tempera-
ture versus enthalpy measured and computed. The five dotted curves are
related to five Lagrangian particles, i.e., thin radial layers in the column,
representing five zones from 50 zones of the mesh used in these computa-
tions. These five curves correspond to the zone at the axis of the wire, the
zone at the surface, and three other zones in between. The computed
dependences nearly coincide up to an enthalpy of 0.6 MJ · mol−1 at which
the volume vaporization starts in the surface layer. The temperature in the
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Fig. 4. The measured temperatures (solid lines, numbering see Fig. 1)
and calculated temperatures for different radial zones for experiment 5
(dotted lines). Triangles, [6]; squares, [7].

liquid core remains homogeneous up to 0.8 MJ · mol−1. At an enthalpy of
1.0 to 1.1 MJ · mol−1 the temperatures reach maxima which is a result of
the sharp rise in the resistance (see Fig. 1) causing a decrease in the heating
power. The thermodynamic work of the core acting on the surface layer
and the coating starts and the pressure begins to decrease. This leads to a
temperature decrease after the maximum is reached. At a certain instant
the particles leave the two-phase region and the temperatures start to
increase again as the specific heat capacity of the gas is substantially lower
than that of the two-phase mixture.

Estimations show that the plasma in the surface layer is transparent
enough and therefore, the liquid core can be seen through the two-phase
layer when the volume fraction of the liquid phase in the layer becomes
lower than the percolation threshold. The ionization degree of the plasma
at 12,000 to 14,000 K along the coexistence line is 0.03 to 0.05, which gives
an absorption length of the order of 10 mm (at 650 nm); the absorption
length in the liquid metal is of the order of 0.01 mm. Hence, the tempera-
ture at the maximum which can be measured in this case is just the critical
temperature. Two facts confirm this conclusion. The temperatures at the
maxima for experiments 4, 5, and 6 practically coincide whereas for exper-
iments 1, 2, and 3, they are substantially lower. For these experiments the
pressure was lower than the critical pressure. As a result the following set
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of the critical point parameters was obtained: TC=(16,000±1,000) K,
PC=(11±2) kbar, and rC=(4.5±0.5) g · cm−3.

The critical point of tungsten was estimated by Seydel et al. [3] also
measuring the temperature at the maximum. The authors attributed this
temperature to the temperature at the spinodal corresponding to the
applied pressure. The following critical parameters were obtained in Ref. 3:
TC=14,000 K and PC=5 kbar. It is interesting to note that the equation
of state used in the present work gives a boiling temperature of 13,600 K at
5 kbar.

5. CONCLUSIONS

Exploding tungsten wire dynamics at heating rates of 1010 to 1011 K · s−1

can be described by a one-dimensional hydrodynamic model. For tungsten
wires used in these experiments (wires manufactured without a special
purification procedure to remove the nucleation centers), the superheating
of the liquid phase is small. For experiments with the highest heating rates,
sufficiently uniform density and temperature distributions are maintained
in the expanding column formed by an exploding wire. This peculiarity of
the hydrodynamic flow has been used to obtain the thermal expansion
coefficient of liquid tungsten ((4.3±0.3) × 10−5 K−1) along with its critical
point parameters: TC=(16,000±1,000) K, PC=(11±2) kbar, and rC=
(4.5±0.5) g · cm−3.
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